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On the basis of a two-layer scheme of wall turbulence, a relative law of heat exchange with a disperse mist 

f low is calculated. It is shown that the influence of  drops on heat exchange leads to a finite "stepwise" increase 
in heat transfer compared to the case of  a single-phase vapor flow. 

As is known [1 ], post-dryout heat transfer depends substantially on the characteristics of the spectrum of 
liquid drops dispersed in a turbulent channel flow. 

When a mathematical description of post-dryout heat transfer involves a continuous (vapor) phase energy 
equation based on the parameters of the spectrum of drops (size distribution functions, dependences of the char- 
acteristic diameter on the radial coordinate), mass sources and heat sinks are determined that owe their origin to 
the evaporation of saturated drops of liquid in a superheated vapor flow [2, 31. In this case, in the absence of a 
rigorous theory for the fragmentation of drops in a turbulent continuous-phase flow various empirical expressions 
for the corresponding source terms are usually used. 

In [4 ] a "resonance" model of the fragmentation of drops in a turbulent gas (vapor) flow in a channel is 
suggested according to which the fragmentation of a drop occurs when the "Kolmogorov" frequency of turbulent 
oscillations in a continuous phase 

exceeds the "Rayleigh" frequency of the natural oscillations of the drop: 

Thus, those drops are susceptible to fragmentation that have a diameter larger than a certain "maximum 
stable size": 

( ~ v  / 1/3 

dd max = fl ~Pd t~} 
(3) 

Here Pd is the density of the liquid drop; v is the kinematic viscosity of the continuous phase (vapor); a is the 
surface tension coefficient; e is the turbulent energy dissipation density; fl is a numerical constant. 

The use of the hypothesis of a turbulent energy generation-dissipation balance and the Prandtl logarithmic 
law for the turbulent flow core leads to the following expression for the most stable diameter of a drop: 

1/3 

+ f b y  + ] (4) 
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Here d~max - u.d d max/v is the dimensionless diameter of a drop; y+ "- u .y /v  is the dimensionless transverse 
coordinate reckoned from the wall; u. = ~ is the wall scale of velocity; ~ is the mean mass velocity of the 

continuous phase (vapor); ~ is the coefficient of hydraulic resistance. 

Within the framework of the resonance model [4 ] it is assumed that drops of size dd < d d max coalesce on 

collision and, as a result, attain the most stable size. At the same time, drops of size d d > d d max, conversely, are 

unstable and are susceptible to fragmentation until they attain size d d max" Thus, according to Eq. (4), for each 

value of the transverse coordinate y the dispersed phase is represented by drops with an identical (most stable) 

diameter d d max" 
The expression for the heat sink qv, which appears due to evaporation of saturated liquid drops and which 

is "smeared" over the vapor phase has the following form [2, 3 ]: 

I - x  /, a (7`(y) - 
qv = 1 2 -  (5) 2 

X Pd dd max (Y) 

Here ~l is the thermal conductivity of the vapor; p and Pd are the densities of the vapor and liquid, respectively; 

T(y) is the vapor temperature at the current value of the transverse coordinate; Ts is the saturation temperature; 

x is the vapor quality of the mist flow. 

Let us consider Prandtl 's classical two-layer scheme [5 ] for the case of turbulent flow of a disperse mist 

flow in a tube. We will make the following assumptions: 1) the influence of the dispersed phase on heat transfer is 

manifested in "smearing" of the heat sink, determined from Eq. (5), over the entire vapor volume, with no drops 

being present inside of the viscous sublayer; 2) dependence (4) of the characteristic diameter of a drop on the 
transverse coordinate of form _yl/3 is replaced approximately by a dependence of form _ yl/Z; 3) drops do not exert 

any influence on the velocity field of the continuous phase; 4) the Prandtl number for the vapor is equal to unity. 

With allowance for the assumptions made, the energy equation for the turbulent core can be written as 

Y+ --d (y+ dO + ) = m20 + . 
dY + ~y+ ) (6) 

Here 0 + = (T - To) /T .  is the dimensionless temperature difference; T. is the wall scale of temperatures defined 

by the relation [5 ] 

T. St 

rw - 7"0 x/ /8 
(7) 

where Tw and T O are the vapor temperature on the wall (at y = 0) and in the tube center (at y -- Ro), respectively; 

is the friction factor; St is the Stanton number. 
The dimensionless parameter m, which determines the effect of drops on heat transfer has the form 

2 l - x  p-~ "'(VDo) 1/3 
m = f 1 2 - -  ~2/3 / /  (8) 

The numerical constant f12 is determined by the corresponding constant fll in relation (4). As estimates 

show, fll - 1, f12 - 1. 
Equation (6) has an exact solution: 

o+ (Ro)2.  _ (y+)2m 
= (9) 

rm [(R O)2m+ l l y + '  

which satisfies the condition 0 + = 0 at y+ -- R~-. 
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Fig. 1. Dependence of the relative law of heat  t ransfer  on the parameter  m: 

l) Re .- 104; 2) 105; 3) 106; dashed lines, the limiting relative laws of heat 
t ransfer  for  m --, oo. 

In the limit m ~ 0, the effect of the drops degenerates  and solution (9) passes into Prand t l ' s  classical law 

[51: 

1 R 0 (10) 
0 + = T i n y .  

The  usual procedure of "joining" profile (9) for the turbulent  core with the l inear profile for  the tempera ture  

sublayer  (which at  P r  = 1 coincides with the viscous sublayer) gives the following expression for the Stanton number  

St 

St-' .Vf (~-) = 6+ + of - (o'), (11) 

where 6 + = 11.5 is the dimensionless thickness of the viscous sublayer;  Of = (T~ - T o ) / T .  is the dimensionless 

temperature  difference for the turbulent  flow core de termined from Eq. (9) at y+ = 6+; (0) + is the dimensionless 

temperature  difference averaged over the cross-section, which is def ined by  the relation 

{ [ .] 2 (RO)  )l-m 
(0+) = Icm (R;)2 [(R; )2m + I] i -- m" (R; _ (6+)I -  _ 

go (R;) l+m _ (~+)l+m (R;)2-rrt _ (~+)2- + (R;)2+m _ (~+)2+m 
l + m  2 - m  2 + m  

Here  r = 0.4 is the Karman constant;  Rg- = R o u . / v  is the dimensionless radius of the tube (Ro = D o /2 ) .  

In the limit m --, 0, Eqs. (11) and (12) give the Prandt l  classical law [5 ] (with allowance for the Reynolds  

analogy St = ~ /8 ) :  

1 / v ~  = 2 log ( R e / v ~ )  - 0 .8 .  (13) 

In this case, the effect of drops on heat t ransfer  degenerates into 

St - ,  St 0 = ~ / 8 ,  (14) 

and the "relative law of heat transfer" ~p = S t / S t  o becomes equal to unity 
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~0--~ I .  (15) 

In the limit m ~ a, we have 

St -I  ~ 11.5 3 /8 /~  . (16) 

This corresponds to the maximum "improvement" of heat transfer 

~POg'max- 11.5 
(17) 

Figure 1 presents the results of calculation of the relative law of heat transfer depending on the parameter 

m, which determines the effect of drops on heat transfer to a disperse mist flow. As seen from the figure, the 
maximum "improvement" in heat transfer occurs already at m ~. 1. 

Thus, the effect of drops dispersed in a vapor flow on heat transfer leads to a finite "stepwise" increase in 

heat transfer compared to the ease of a single-phase vapor flow at the same values of the total temperature difference 

Tw - TO and the vapor phase Reynolds number Re. This effect has a clear physical explanation, consisting in a 

decrease in the thermal resistance of the turbulent core of the flow after the "introduction" into it of heat sinks 

appearing due to the evaporation of drops. 

As heat sinks attain a certain level of intensity (increase in the concentration of drops in the vapor flow), 
complete "switching-off" of the thermal resistance of the turbulent core of the flow occurs and heat transfer follows 

the mechanism of "pure" heat conduction through a temperature (viscous) sublayer 

( r .  - 7-0) ( i s )  
qmax = 

We calculated the influence of drops dispersed in a turbulent vapor flow in a channel on heat transfer, 

which can be used in determining post-dryout heat transfer. 
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